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1. INTRODUCTION

Recent papers by W. S. Cleveland and Devlin (1980), Liu
(1980) and W. P. Cleveland and Pollner (1978) have pointed
to the existence of calendar effects in economic data. The
background for much of this work is contained in Young
(1965), which describes the relevant properties of the calendar
and gives the equations for the calendar adjustment in X—11

-computer programs for seasonal adjustment.

Work on seasonal adjustment based on time series models
has stimulated new interest in modeling these effects. It turns
out that a straightforward use of the methods contained in Box
and Jenkins (1970) is not sufficient to capture calendar varia-
tions because they are not precisely periodic or not so within a
useful time frame. As an example, consider an Easter effect in
monthly data y,. When Easter falls in the same month in con-
secutive years it is correct to compare y; with y,_j,. In other
cases there is no precise comparison, as Easters are 11 or 13
months apart while the remaining seasonal has the usual 12-
month separation. The autocorrelation function will capture
the average relationships in the series, but no standard
ARIMA model can simulate acutal behavior for each year. In
this paper, regression models are used for calendar effects.
Using appropriate design matrices, the precise form of a
deterministic effect can be estimated and subtracted from the
series. An ARIMA model is applied to the residuals. This is
analogous to subtracting out the intervention part of the model
as in Box and Tiao (1975), or more generally, the determinis-
tic part of the model as in Pierce (1978). If seasonal adjust-
ment is desired, it can be accomplished by using the complete
model as in Pierce (1978), by applying the ARIMA-based
filters in Box, Hillmer, and Tiao (1978) to the residuals, or by
applying X~—11 to the residuals. Improved forecasts are
obtained by extending the design matrix into the future. The
current limitation of this approach is the implied assumption
that the effects are the same from year to year relative to the
calendar.

Three types of effects will be discussed for monthly data.
These are length-of-month, composition-of-month (number of
Sundays, etc.,), and Easter effects. Week-of-month effects,
seasonal effects, and certain holiday effects in weekly data
will also be analyzed. The effects of the composition of the
month are often called trading-day effects, referring to busi-
ness transactions typical for a given day of the week.

2. SIGNALS OF CALENDAR EFFECTS IN MONTHLY
DATA

Calendar effects are generally second-order effects which
cannot be observed until other sources of variation have been
eliminated or reduced. Figures 1A and 2A show the currency
and demand deposit components of M-1A as compiled by the
Federal Reserve Board. Figure 3A shows total apparel retail
sales as compiled by the U.S. Bureau of the Census. The
three series illustrate a range of seasonal variation relative to
the trend. The three series are also shown in figures 1B-3B
after a straight line detrending to achieve a scale which
reveals their seasonal patterns better. Any calendar effects are
masked by the strong seasonal. Since all appear to have a sea-
sonal which increases with trend, the series were logged for
further analyses.

The spectra of the first difference of the logged currency
and retail sales series appear in figures 4 and 5. While not the
same, both are dominated by seasonal effects. The same is
true for demand deposits. The autocorrelation functions have
high values at multiples of 12. A periodic mean was fit to
each series as an approximation to a seasonal. This was
removed to reveal remaining effects. The resulting spectra
and autocorrelations are shown in figures 6 to 8. All three
series exhibit spectral peaks at f = .348, the primary calendar
frequency cited in Cleveland and Devlin (1980). The fre-
quency .432 shows up in the currency series and the addi-
tional frequency .304 in the retail sales series. All three of
these frequencies relate to composition of the month. The fre-
quency .304 corresponds to the first harmonic of the weekly
frequency, while .432 corresponds to a week by seasonal fun-
damental interaction. The latter may be due to different
within-week patterns at different times of year, or simply
reflect that the composition of the months repeats approxi-
mately some years for certain day-of-week patterns. The retail
sales series exhibits four other peaks. These will be shown to
relate to an Easter effect.

The autocorrelation functions illustrate the difficulty of
identifying calendar effects by this means. An autocorrelation
function based on a simulated monthly composition effect is
given in figure 9. Some evidence of this pattern is evident at
lags beyond 10 in the currency autocorrelations. However,
the pattern becomes averaged in with the autocorrelations of
the stochastic part of the series, as mentioned in Liu (1980). It
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is too weak to show up in the demand deposit autocorrelations
and is dominated by the Easter pattern in retail sales auto-
correlations.

3. LENGTH-OF-MONTH AND COMPOSITION-OF-
MONTH EFFECTS FOR FLOW DATA

The two monetary series presented represent inventories or
stocks of money. They reflect the cumulative sums of transac-
tions or flows. The sales series represents transactions
directly. It is useful to characterize a day of the month in
terms of the net transactions on that day. On a holiday this
would be zero. Other days might have positive or negative
values. Since the model will be based on transactions or
flows, the appropriate model for sales is considered first.

The complete model for the observation y, is

OBz ~ fi(@) = 6(B)a, (3.1

where z, is either y, or log y, as appropriate, B is the backshift
operator such that B*z, = z,_,, ®(B) is an autoregressive
polynomial in B with roots on or outside the unit circle, and
‘8(B) is a moving average polynomial with roots outside the
unit circle. The form of f,(a) is to be specified, and 4, is a
sequence of independent uncorrelated noise terms with zero
mean and constant variance o 2. A discussion of models not
containing f,(a) may be found in Box and Jenkins (1970) or
Nelson (1973).

The vector f (f;:2=1,2,. .., T)canbe expressed as f =
X o where « is a vector of estimated coefficients and X is the
design matrix with T rows to be generated from the calendar.
The matrix X given here is a modification of the one in Young
(1965).

Let m,(k) be the number of days of type & in month ¢,
where k = 1 repre;sents Sunday, k = 2 represents Monday,

etc. Then m, = 2”’1 (k) will denote the length in days of
k=1

month ¢, and m,/7 is the average number of days of each type
in month ¢. Finally 7@ = 365.25/12, the average month length
over a 4-year cycle, and the combined effect of composition
and length of month will be denoted by (TD),. The basic
equation for these effects is

7
ID), =Y, mk)By (3.2

k=1

where the 3, are regression coefficients. The rows of X could
be taken directly from this equation as m, (k), k = 1,2, . . . ,
7, but it is useful to alter them slightly. Equation (3.2) may be
rewritten as

7 m, 7
(D), = 3 m)B — == 3B (3.32)
k=1

7
=3 mE)Br — B)
k=1

+ (m, —mB + mp (3.3b)

SECTION 2
;
= 3 m(k) ~ B - B
k=1
+ (m —mB + B (3.3¢)

The first term of (3.3c) corresponds to the composition-of-
month effect normalized so the coefficients add to zero. The
first seven columns of X are m, (k) —m,/7,k=1,2,. ..,17,
and the first seven o, are B; — B. The seven columns have
rank 6. An eighth column (m, — ) is used to represent
length-of-month effects with ag = 8. Observe that for 28-day
Februarys m,(k) = m,/7 for each k, so there is no composi-
tion effect. Column 8 would be spanned by a set of seasonal
dummies except for leap years. We orthogonalize seasonal
dummies with respect to this column to permit a specific
length-of-month estimate using ag. The seasonal dummies are
now nearly rank deficient, but the effect estimated takes a
much simpler form. It now represents the intensity of the net
transactions in each season and not the number of days on
which they occurred. This is more in keeping with the general
sense of seasonal effects. If the data are differenced to achieve
stationarity, the columns of X are also differenced so the
transformed effects are correctly modeled. An intercept
column is added to X which absorbs 7B in the absence of
differencing.

4. STOCK DATA

Consider now a series which represents stock at the end of
the month. Let F,(i) be the transactions or flow on day i of
month ¢, S, be the stock at the end of month ¢.

S =S + D F0) 4.1

Equation (4.1) states that the new stock or inventory is the old
one plus the inflows and outflows which took place during the
month. Since (3.3) is intended to describe flows, it is related
to the first difference of stock data. The same matrix X can be
used, but it is not differenced when the data is for estimation
of . To transfrom the effect back to the undifferenced data,
the columns of X must be integrated to form W. The first row
of Wis set equal to zero. The rest are formed recursively from

w' =w X 4.2)

where w, " is row ¢ of W. The entire matrix W can then be cen-
tered so W o has mean zero. Thus for end-of-month stocks we
have

S, =8 1 =xa 4.3)
S =Wa (4.4)

5. DAILY AVERAGED STOCKS

The demand deposit and currency series compiled by the
Federal Reserve Board do not represent end-of-month stocks,
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but the average of daily stocks. This causes an uneven weight-
ing of the flows. Let S,(i ) be the stock on day i of month ¢,
and suppose a 3-day month.

S(1) =8, + F(1)
5 (2) =S5 + F(1) + F(2) (5.1

5(3) =5, + F,(1) + F,(2) + F,(3)
28:6) =385, +3F,(0) + 26, + FG)  (52)

5, =S+ F + 2R + RO (53

Since day 1 flow appears in all subsequent averages, it gets
the most weight. For a calendar month, one must know on
which days of the month each day of the week fell and com-
pute its appropriate weight. If day k occurs on the first day of
the month, then the expression corresponding to (5.2) for the
month has for the coefficients of the flows for that day

Nk)y=m +m, —7
+mo— 14 +m — 21 +m — 28 (5.4)
where N, (k) is the cumulative times day k of the week occurs
in the daily stock sum for the month. Let J, (k) be the sum of
the days of the month less one on which day k occurs, i.e. 0 +

7+ 14+ 21 + 28 in (5.4). Then a general expression for
Ny(k)is

Ni(k) =m, x m,(kj = Jik) (5.5)

Corresponding to (5.3) is
7
= 1 _
So =84+ Imk) - o 1 OWF (k) + B, (5.6)
k=1

Here F (k) represents the average flow attributed to day &, and
P: the flow due to other sources. This expression assumes any
patterns in flows other than day-of-the-week patterns apply
equally to each day of the week. The logic of (5.6) gives for
the next month

_ 7
Sort =S+ Y, Imk) + my (k)
k

=1
1 — _
- ——Ja&)IF (k) + P, + Dr 3.7
my
Thus the first difference of the data is related to
- — 7 1
S0 =8 =X Imlk) + -1,k
k=1 my

1 — ~
= S KIF k) + P, ~ B, (5.8)
m 4

Now F (k) plays the role of « in (4.3), and m, (k) represents
the same rows of X as before. The only modification to (4.3)

59

is to change X by the Ji(k ) terms of (5.8). Then W and X have
the same relation as in (4.2).

Length-of-month effects for stock at the end of the month
are completely analogous to the effects for flows, except they
are related to (1 — B)y,. The situation for daily averages is
somewhat more complicated. Corresponding to (5.4) is

_ m(m, + 1)

L,=m,+m,_]+m,_2+...+l >

5.9
Letting S be the average daily flow

m + 1

SaS,_; + (5.10)

and

Mt 1

SimaS, 4+ [m + 2

] 5.1n

where a indicates proportionality. ‘1 nese imply

m+om oy
Str — S ———r

5 (5.12)

One should observe that calendar effects will produce the
same spectral peaks and autocorrelations in flow, stock at the
end of the month, or daily averaged stock data. These signals
are more related to frequencies of repetition in the calendar
than to the specific form of the effect. Further, the three
design matrices relating to y, — Y, -1 are correlated, so that use
of the wrong one will still reduce composition-of-month
effects considerably.

6. RESULTS FOR DAY-OF-THE-WEEK MODELS

The spectrum of the retail sales series after removal of the
length-of-month and composition-of-month effects is shown
in figure 10. The frequencies corresponding to these effects
are gone. An F test based on the reduction in residual sums of
squares (RRSS) divided by the residual sum of squares (RSS)
for a complete model is F 5 121 = 25. The corresponding tests
for currency and demand deposits are F' 7,101 = 38 and F7
= 20. Figure 11 shows the resulting spectrum for currency.
Use of the flow model on the stock series also produced signi-
ficant results, but the RRSS figures were smaller and the spec-
tra somewhat less free of calendar effects. Estimation was
accomplished by minimizing the conditional sum Za,z over

t
the parameters of ®, 0, and fi(@) in equation (3.1).

7. EASTER EFFECT IN SALES DATA

Models for holiday effects are necessarily more specific to
a particular series. While the timing of the effect is general,
the response to it is not. Composition-of-month effects only
consider variations in flow intensity by day of the week. A
holiday response might be a decrease or increase before or
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after the date. The changes might be linear over several days
or might take some other form. Thus a parameterization
should be partly informed by subject-matter knowledge and
partly by the data itself, as in intervention analysis.

A plot of April minus March differences in z, vs. the date
of Easter is given in figure 12 for the retail sales series with
composition-of-month effects removed. The date of Easter is
coded as the distance from April 1. There is a clear difference
between March dates and late April dates. The piecewise
linear form drawn in represents the simplest form which ade-
quately represents the pattern. Easter falls in the critical April
1 to April 10 period so few times that a more complex shape
cannot be justified. The theoretical perspective is an increase
in sales prior to Easter. This sets the left corner in April 1, as
any increase must fall entirely in March. The April 10 corner
is more arbitrary, but includes the Friday a week before Easter
and is consistent with the data.

The model corresponding to this linear change is a uniform
increase in daily sales over the period 10 days prior to Easter.
The amount of this which falls in March is the sum of the days
in this period which fall in March, the integral of a constant.

Figure 13 shows a simulation of this model using the con-
straint that March plus April sales should not be affected.
Note how few times the swing amplitudes are reduced, and
the irregular pattern of the Easter dates. The spectrum and
autocorrelations of the first difference of this simulation are
given in figure 14. Both patterns can be identified in figures 8
and the spectral peaks in figure 10. These were completely
removed by the model with an F 1) = 171.

8. WEEKLY DATA

Weekly data poses a different set of problems from monthly
data with respect to seasonality and to calendar variations.
Whereas January always covers the same time span relative to
the seasons, the first Sunday-through-Saturday period of the
year does not. Thus, the phasing of the weeks within the year
must be considered in estimating seasonality,.and a 1 — B
operator is not as precise a seasonal filterasa 1 — B 12 opera-
tor is for monthly data. Also, many more holidays vary from
one week of the year to another than vary from one month of
the year to another. Some specific holiday effects will be
modeled in section 10. The next section concentrates on a
more severe problem in monetary series.

9. WEEK-OF-THE-MONTH EFFECTS

Weekly data on demand deposits of member banks are
compiled by the Federal Reserve Board. These figures are an
average of daily figures for a week spanning Thursday of one
week through Wednesday of the next. They -are dated by the
Wednesday date. A weekly series was grouped into sets of
four or five observations by month in which the Wednesdays
occurred. The groups were then sorted by the day of the
month on which the first Wednesday of the month fell, 1-7.
The averages of the corresponding Wednesdays contained in
the same day-of-the-month pattern are shown in the first seven

SECTION 2

lines of figure 15. The bottom is an average of all Wednes-
days by day of the month on which they occurred. In general,
there are high values in the first part of the month and a.fall
toward the end of the month. As the first Wednesday moves
from the first to the third, it rises relative to later values. The
third pattern down shows months on which the first Wednes-
day fell on the 3rd of the month and the fifth Wednesday (if
there was a fifth) fell on the 31st. Note how the last value
appears to rise toward a first-of-the-month level.

We do not have a complete understanding of the reasons for
this pattern at this time. Social Security payments and other
monthly payroll checks which go out near the end of the
month are probably major contributors to the pattern.

This within-month variation may be as important for
weekly data as the usual seasonal is for monthly data. A plot
of the demand deposit series along with its spectrum is shown
in figure 16. Note the peaks at f = .23 and f = .46. These are
due to the sampling of a monthly frequency on a weekly basis.
A month is 365.25/12 = 30.4375 days or 4.348 weeks. The
reciprocal of 4.348 is .23. Thus f = .23 is the fundamental
and f = .46, the first harmonic of a monthly pattern in weekly

‘data.

Within-month variations such as the one illustrated in fig-
ure 15 can be modeled using a Fourier expansion. Let m, be
the number of days in the month containing week . Let i be
the day of the month of the data value y,. Then values x,; for a
design matrix X may be generated according to

x; = sin(%ﬂ-) or cos(-%}:-hji) 9.1

Use of three to five frequences (j values) is usually sufficient,
implying 6-10 parameters. This model assumes the same
within-month patterns for all months. Estimation and removal
of an X a having the described form completely eliminated
the peaks at f = .23 and f = .46.

10. HOLIDAY EFFECTS IN WEEKLY DATA

The total retail sales series was published weekly through
1977, as well as monthly. Though the data are not strictly
comparable due to sampling differences, the series provides
an interesting comparison and confirmation of holiday models
in weekly and monthly data. Both types of models are based
on assumed daily patterns, but the timing and the levels of
aggregations are different.

10.1 Easter

The Easter pattern made an interesting study in the monthly
series because of its movement from March to April and its
various positionings within those months. The weekly series is
aggregated from Sunday through the following Saturday. The
figures just before Easter always represent the 7 days before
Easter, i.e., the same 7 days relative to Easter. The week of
the year will vary from year to year. This is fundamentally
simpler than the monthly situation where both the month and
phasing within the months change. Figure 17 shows a plot for
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each year of the week of Easter along with the week after and
3 weeks before. The series was logged and detrended with a
straight line before plotting to remove most of the trend varia-
tion. The week before Easter appears lightly elevated, while
Easter week is much higher than the first 2 and last weeks.
This is generally consistent with the pattern of 10 days of
increased sales prior to Easter postulated for the monthly
series, as three would fall to the first elevated week and seven
to the second. The estimated weights for these weeks were .28
and .72, respectively.

10.2 Christmas

The effect of Christmas on the monthly retail sales series
was large December values. As neither the month nor the
phase within the month changes, it becomes part of the regu-
lar seasonal. In relation to the weekly series Christmas
behaves much like Easter in the monthly series. Both the
week of the year and the day of the week change from one
year to the next. Figure 18 shows the data for each year
grouped by week relative to Christmas. The set labeled X is
for the Saturday just prior to Christmas up to and including
Christmas falling on Saturday. When Christmas falls on Fri-
day, all of the sales days just prior to the holiday will be
credited to the Saturday after Christmas, or X + 1. This situa-
tion is represented in the leftmost two lines of each group.
The Saturdays before Christmas tend to have their minimum
values, as they are at their maximum distance from the holi-
day. Moving right in each group, the next two lines represent
Christmas on Thursday. The Saturday after Christmas shows
a decline, as 1 less day prior to Christmas falls in that week.
The Saturdays prior to Christmas show an increase as they
move closer to Christmas. The next three lines are for Christ-
mas on Wednesday and the next line is for Christmas on Tues-
day. By the time Christmas reaches Monday, the relevant
sales days for the week after Christmas are only Sunday,
when the stores would likely be closed, so that this week
shows no further decline. The earlier weeks continue to
increase. Now assume a linearly daily increase in sales is run-
ning from December 1 through December 24, omitting
December 24 if it is a Sunday and rescaling the rest to the
same total. This would imply a linear increase in a value for a
Saturday before Christmas as the Saturday moved toward
Christmas. The values over X — 1, X — 2, and X — 3
should be a maximum for Christmas on Saturday, while the
values over X would be a maximum for Christmas on Sunday.
The last three lines for Saturday show a decrease in the X pat-
tern because a day is removed from the week.

A more general model for the daily pattern would be

Wy

W =138

Si

where S, = 1 from December 1 through December 24. This is
one of the intervention models described in Box and Tiao
(1976). For & = 1 a linear increase is obtained. In general W,
= Wo(l + 8 + 8 + ... + & ') which approaches an
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asymptotic value Wo(1 — 8%%/1 — 8 for 8 < 1 and increases
exponentially for 8 > 1. For z > 24 W, = 0. The estimated
value of & was .98, not significantly different from 1.
December | was used as a starting point because the X — 4
values in figure 18 did not show an increase as they
approached Christmas. Figure 19 shows a plot of 3 years of
the series with dots indicating values after removing estimated
holiday effects for Easter and Christmas. Other calendar
effects may remain, but this alone reduces the sum of squares
of the first differences to 30 percent of its original value.
Application of an ARIMA model containing terms in B>?
obtained only a 46-percent reduction.

11. FIXED SEASONALS IN WEEKLY DATA

The causes of seasonality which do not change timing from
year to year relative to the seasons are the subject of this sec-
tion. When their effects are the same year to year, some fixed
functional form is appropriate. In additive models for monthly
data, 12 seasonal dummies constrained to add to zero are usu-
ally specified. An equivalent specification is

s : .
s = E[ajsin(z—g&) + Bjcos(z—lwzJi)] + Becos(trt)
j=1

The extension of this equation to weekly data is not
straightforward for two reasons. The first Sunday-through-
Saturday period of the year is generally not the first 7 days of
the year. Hence, the first Saturday (or any other day) data for
a year does not represent exactly the same season. In addition,
the number of terms required would be 52 or 53. This seems
excessive.

We have tentatively adopted a model which mimics the
monthly model for weekly data. Let n, be the number of days
in year y. Let u, be the first day of the year in week ¢ and v,
the last. Then the definition of s, is

v, 6 .. .
§; = E E a}-sin(m) + Bjcos(ﬂ)
i=u, j=1 ny ny

This formula includes frequencies up to six times a year. The
effect for a specific week is obtained by summing over the
appropriate days. If all frequencies up to .6 per year were
used, Christmas and other holidays which are tied to a given
day of the year could be modeled this way. It seems more par-
simonious to use the trigonometric formulation for low fre-
quencies and holiday models for special effects.

The variance reduction accomplished by this formulation
depends on the rest of the model. In stationary series or a
series detrended by a very low frequency filter such as a
straight line, the variance reduction is substantial. If the
series is detrended by a first difference operator, the effect is
much less because the frequencies involved are mostly
removed by the differencing.
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Figure 18. EASTER EFFECT ON RETAIL SALES _—
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12. DISCUSSION

Some techniques for detecting and modeling calendar
effects in economic data have been presented. They are neces-
sary because ARIMA models cannot capture the irregular tim-
ing of the events. The problems of weekly data are more
severe because of the number of annual events that can move
and the possible complexities of the seasonal pattern. The fun-
damental period of the weekly seasonal is much longer with
respect to the sampling rate and therefore closer to trend-cycle
phenomena. A component model for the trend involving a
(1 — B) operator may not be appropriate. Long memory
models being explored by Dempster and Granger may be
needed.
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COMMENTS ON “MODELING TIME SERIES WHEN CALENDAR EFFECTS ARE
PRESENT”’ BY W. P. CLEVELAND AND M. R. GRUPE

Allan H. Young

-

The authors examine the calendar effects in economic data
within the context of ARIMA modeling. They consider three
causes of variation in monthly data: (1) The length of the
month and its effect on the amount of activity in the month
relative to other months within the year; (2) the composition
of the month, that is, whether the month contains four or five
Sundays, four or five Mondays, and so on, and its effect on
the amount of activity in the month relative to the same month
in other years; (3) the date of Easter and its effect on the
amount of Easter-associated activity that takes place in March
relative to that in April. The authors point out that calendar
effects must be specifically dealt with in seasonal adjustment
and that ARIMA models, by themselves, are not appropriate
tools.

In the broader context of economic data, as opposed to the
narrower context of ARIMA modeling, much of the subject of
this paper is well-traveled territory. For example, consider the
work of the Bureau of the Census. By the midsixties, Census
was adjusting retail sales series for three types of calendar
effects: (1) The composition of the month, using the same
type of technique described in Cleveland and Grupe’s paper,
(2) Easter variation, using the same technique described in the
paper, which had been adopted from work at the Organization
for European Cooperation and Development (OECD), and (3)
Labor Day variation, a holiday not mentioned by the authors.
Census was also examining the retail sales series for the effect
of the length of the Christmas shopping season. Also, in this
period, Census, as well as other agencies, was adjusting many
other series for calendar effects.

Before considering the paper, let me interject some per-
spective on the features of the calendar that affect economic
data. As the authors note, these features, and their effects,
are not necessarily fixed over time. They also vary from cul-
ture to culture.

Our modern-day calendar contains 12 months of either 28,
29, 30, or 31 days in length. This calendar was established in
the 16th century by Pope Gregory, who straightened out the
earler 12-month calendar developed by the Romans. The com-
position of a month affects the amount of monthly activity
because economic activity generally does not take place at a
constant rate over the entire week. This variation in activity
goes back a long way. One finds in Genesis, *“. . . and he
rested on the seventh day from all his work which he had
done.”

Superimposed on the Gregorian calendar are holidays.
Some of the holidays, such as Easter, are tied to the lunar
calendar and, therefore, are not tied to a specific date and can
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even move between months; other holidays, such as Labor Day,
are not tied to a specific date of the month. Also, the scheduling
of the dates of some holidays, such as Washington’s Birthday,
has been changed in recent years, in this case, from a fixed
date, February 22, to a fixed day of the week, the third Monday
of the month.

The calendars of other cultures also have features that
affect economic data. For example, in Saudi Arabia, the
effects of the Feast of Ramadan are reflected in the economic
data. Also note the article referenced by the authors, in which
Liu examines the variation in the volume of Taiwan’s high-
way traffic arising from the Chinese New Year. This holiday,
the first day of the year in the Chinese calendar, flops back
and forth between January and February in the Gregorian
calendar, which is used in compiling the data.

Some retail merchants have chosen to define away the
problem of the composition of the month by redesigning the
calendar. They keep their books on the 4—4—S plan for each
quarter. Two months of 4 weeks each, followed by a month of
5 weeks, accounts nicely for the quarter. Under the 4—4-3
plan, the composition of a month does not vary from year to
year. Does this clever scheme help us? No. Since it is not
used by all merchants, the result is that either some 4—4—5
sales reports pollute the Census monthly data, or Census per-
sonnel, on the basis of incomplete information, must attempt
to undo the retailer’s data and place them back on the calendar
of Pope Gregory. Additionally, Eastman Kodak and a few
other firms keep their records on the basis of a 13-month year
with 4 weeks in each month. In fact, Eastman Kodak rewrote
X—11 to include 13 months per year.

The authors set forth three models for estimating the
composition-of-month effect. The first, which they state is
appropriate for flows, is essentially the same specification as
that in X—11. In presenting the other two, one for monthend
stocks and the other for daily average stocks, the authors
move into less-explored territory. Their work implies that
adjustments for the composition-of-month effect are needed
for stock series; however, they do not demonstrate this need
for monthend stocks. In addition, they present the results for
the daily average money supply only in terms of spectra,
which leave much to be desired in practical time series work,

Allan H. Young is Deputy Director, Bureau of
Economic Analysis, U.S. Department of Commerce,
Washington, D.C. 20230.
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and F-ratios, which must be interpreted cautiously when com-
puted from smooth series.

The general wisdom has been that monthend stock series
such as inventories contain little, if any, composition-of-
month effects. This has been backed up by tests, using the
flow specification in X—11 to test for composition-of-month
effects, that found little, if any, significant variation. I am not
aware of the equivalent general wisdom, if any, for the money
supply or what sort of testing may have been done previously.
The published monthly seasonal adjustment of the money sup-
ply does not contain any adjustment for the composition of the
month.

Why might one conclude that monthend stock series, such
as inventories, would not be affected by the composition of
the month? Essentially, for two reasons. First, consider the
gross flow into and out of the stock rather than the net flow
referred to by the authors. An example is a manufacturing
plant that works a 5-day week. It receives shipments of raw
materials 5 days a week; it builds up work-in-process and fin-
ished goods inventories by steadily applying labor and other
inputs 5 days a week; and it ships its product 5 days a week.
Thus, the stock will be steady, balanced by equal inflows and
outflows. The stock will not vary with the composition of the
month. Granted, the real world is not this simple: Raw materi-
als may pile up on the rail siding on the weekend and be
logged in on Monday, and there may be a big push to ship
everything before Friday. Nevertheless, my example captures
the essence of many stock situations.

Second, consider what happens if stocks build up in a
recession and then are depleted in a boom. If the gross inflows
and outflows have the same composition-of-month effect as
they do in my example, the effect on the stock in the recession
period will be of opposite sign to that in the boom. When
estimated over both periods, the composition-of-month effect
will tend to cancel out. Thus, for both reasons, one would
expect any composition-of-month effect to be small in a series
such as inventories. It would be limited to a net effect reflect-
ing the extent to which gross additions outweighed gross
deductions, or vice versa. Possibly, one might find more
effect in disaggregated data for detailed industries or indivi-
dual plants.

To me—a neophyte when it comes to money and
banking—it appears that the above considerations should also
apply to the daily average of the money supply; however,
there may be some subtle differences. For example, the provi-
sion of currency before the weekend could, by operating
through reserve requirements, shrink demand deposits by
more than the increase in currency. Also, perhaps the effect
on the money supply of the flow of Government securities to
and from nonbanks varies with the composition of the month.

The practical question, which the authors do not examine,
is, how important is the composition-of-month effect in
monthly stock series? In what follows, I examine this ques-
tion in terms of the two components of the money supply—
currency and demand deposits—used by the authors, and in
terms of monthend manufacturers’” inventories of durable
goods and of nondurable goods, as compiled by the Census
Bureau. My investigation was limited by the time available
and was hampered because it became apparent that the X—11
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trading-day adjustment procedure, which I had intended to
use, is less appropriate for stock series than I had initially
thought—or than the authors perhaps imply-~because of the
specification for February. In assessing my results, one should
also note the procedure developed by William S. Cleveland
and Susan Devlin, at Bell Laboratories, for estimating
trading-day variation. It provides a somewhat better estimate
of the combined trading-day irregular component, from which
one can estimate trading-day variation, than does X—11. The
procedure allows for the preconditioning of the irregulars that
result from the use of moving averages in prior steps.
Nevertheless, I doubt that more refined analysis would lead to
conclusions different from those that I derived. My basic find-
ing is that, of the four series, only the currency component
of the money supply has trading-day variation of any
consequence.

1 first examined the series for the composition-of-month
effect using the X—11 trading-day adjustment procedure. The
F-ratios shown in table 1 were obtained. The critical limit in
the X—11 program for the F-ratio at the l-percent level is
about 3. Experience suggests that a somewhat higher value for
the limit would be better. Thus, only the currency component
appeared to have significant variation. The daily weights were
very close to 1.0, compared with those estimated for flow
series. Those for currency are shown in table 2.

Table 1. TEST FOR COMPOSITION-OF-MONTH EFFECT

Series F-ratio
Currency, 195968 29.8
196979 10.6
Demand deposits, 1959—68 2.1
196979 35
Durable manufacturing inventories,

195979 1.8

Nondurable manufacturing inventories,
1959-79 .8

Table 2. DAILY WEIGHTS FOR CURRENCY

Day of the week 1959—68 1969-79
Monday 1.005 1.004
Tuesday 1.004 971
Wednesday .993 1.005
Thursday .995 .981
Friday 1.036 1.017
Saturday 991 1.007
Sunday 1.016 1.015

I wanted to carry the analysis one step further and ascertain
the effect on the series of removing the estimated trading-day
variation. The X—11 procedure, however, assumes that more
activity occurs in a leap-year February than in a nonleap year.
The adjustment factors, therefore, are not appropriate for.a
stock series. (Februaries were largely excluded as extremes in
the regression estimation, so the daily weights and F-ratios
were little affected.) )

Given the problem with X—11, monthly trading-day adjust-
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ment factors were estimated for each series by classifying, by
type of month, the monthly irregulars from a run with no
trading-day adjustment. For example, all 31-day months
beginning on Monday were placed in one group, all 31-day
months beginning on Tuesday in another, and so on. Then, for
each of the seven groups of 31-day months and the seven
groups of 30-day months, the median was taken as the
trading-day adjustment factor. The median for all nonleap-
year Februaries Was also used. For each leap year, the actual
February irregular was used as the factor. The resulting
monthly factors for currency for the period 1959-79 are shown
in table 3.

It should be noted that 31-day months preceded by 31-day
months might have been classified separately from those pre-
ceded by 30-day months or by Februaries. This type of refine-
ment would have been closer to the authors’ specifications for
stocks; however, inspection of the currency series revealed
that little would have been gained. The differences in the
medians were virtually nil.

Table 3. TRADING-DAY ADJUSTMENT FACTORS BASED
ON MEDIANS: CURRENCY, 1959-79

First day Leap-year
of month 31-day months 30-day months Februaries
Monday 1.0000 1.0003 1.0000
Tuesday .9991 .9994 1.0004
Wednesday 9997 .9987 (0,9]
Thursday .9995 .9998 .9982
Friday 1.0010 1.0007 (X)
Saturday 1.0003 1.0000 .99%0
Sunday 1.0003 1.0008 .9994

Nonleap-year Februaries: 1.0002

X Not applicable.

Summary measures of the month-to-month variation in the
trading-day component (obtained from the medians), irregular
component, and seasonally adjusted component are shown in
table 4. For the last two components, the summary measures
are shown with and without the trading-day adjustment. Only
the average month-to-month variation in the irregular com-
ponent of the currency series was reduced more than 0.01 per-
cent by the trading-day adjustment. Relative to the variation
in the seasonally adjusted series, the trading-day variation was
very small in each series. In contrast, the trading-day varia-
tion in retail sales was about twice as large as the variation in
the seasonally adjusted series.

In reviewing the subject of the paper, it became apparent
that, in some instances, the practices followed by the statisti-
cal agencies in making trading-day adjustments in flow series
fall short of what is possible. For example, the authors cite a
recent paper by W. S. Cleveland and S. Devlin that presented
evidence of residual trading-day variation in manufacturers’
shipments of durable goods as compiled by the Census
Bureau. Further, Cleveland and Devlin indicated that Census
used X—11 to make the trading-day adjustment. As the
developer of the X—11 trading-day adjustment, [ became curi-
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Table 4. SUMMARY MEASURES OF STOCK SERIES,

195979
T a
Series TO WithTD WoTD WithTD WoTD
Currency 0.08 0.10 0.14 0.54 0.54
Demand deposits .07 28 .28 48 .48
Durable manufacturing
inventories .06 25 26 .9 19
Nondurable manufacturing
inventories .05 24 24 63 64
Note: TD, T, and CI are averages, without regard to sign, of month-to-month
percent changes in the wading-day, irregular, and lly adjusted comp
respectively.

ous. I found that the trading-day adjustment was not made by
X—11 or by any other procedure that estimates the
composition-of-month effect from the monthly data. Instead,
Census adjusted data for detailed industries using external evi-
dence concerning the activity on each day of the week.

This type of procedure usually comes down to assuming a
simple pattern of activity, such as a 5-day or 7-day week, with
equal weights for each workday. Sometimes it closely approx-
imates an adjustment for the composition of the month that is
based on evidence contained in the monthly time series. In my
experience, however, the evidence in the monthly data usu-
ally must be used to obtain an adequate adjustment. Simple
assumptions or casual observation will not work.

I also found that the Federal Reserve Board (FRB) uses
external evidence to adjust the production indexes for
composition-of-month effects. The FRB seems to have orig-
inated this approach before World War II. Apparently one
reason Census uses it is to make the shipment series compara-
ble to the production series. At this point, it seemed
worthwhile to examine both the Census and FRB series using
the X—11 procedure. The results are summarized in table 5.

Table 5. SUMMARY MEASURES OF FLOW SERIES
PREVIOUSLY ADJUSTED FOR TRADING-DAY

VARIATION
I o
Series Fratio TD WithT™D WoTD With TD Wio TD

Durable manufacturing

shipments, 1960—74 113 0.78 1.20 1.39 1.63 1.74
Nondurable manufacturing

shipments, 1960—74 2.8 .21 68 il 94 .98
Durable manufacturing

production, 1960—74 1.2 12 olitf .80 1.16 1.18
Nondurable manufacturing

production, 196074 5.6 .23 66 .69 2 56

Note: TD, I, and CI are averages, without regard to sign, of month-to-month percent
changes in the trading-day, irregular, and lly adjusted comp pectively. The
F-ratio and TD measure residval trading-day variation in the series previously adjusted for _
trading-day variation by the source agency. The residual trading-day variation is included in 1
and CI in the columns headed ‘“W/o TD." It is removed in [ and CI in the columns headed
*‘With TD.” The estimate of the residual trading-day variation does not reflect the difference
between leap-year and nonleap-year Februaries because this variation was removed by the

Source agency.

In this table, the measures of trading-day variation are not of
the total of this variation but of the residual that remains in the
published series. The findings for the Census series on durable
shipments agreed with those of Cleveland and Devlin, and
they suggested that the series could be improved somewhat by
basing the trading-day adjustment on the evidence contained
in the monthly data. The problem seems to be that the external
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weights given the weekend are too heavy. The daily weights Table 6. DAILY WEIGHTS REPRESENTING

representing the residual variation are shown in table 6. Possi- RESIDUAL VARIATIONS

bly the detailed nondurable components and the FRB detail -

could also be improved, although this is not apparent from the PG I Weight

aggregates. Perhaps the FRB series fares better than the Monday 0.910

Census series in the test because, for some industries, produc- Tuesday 1.074

tion is measured by proxies that are not subject to 'I\'Xxedurrs‘da?%day = éf‘,g

composition-of-month effects. . . Friday o 1.063
Perhaps the deliberations of this conference will encourage Saturday 961

Census and FRB to review their procedures for these particu- Sunday .867

lar series.
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Cleveland and Grupe discuss a number of phenomena that
arise in both monthly and weekly time series that are related
to the calendar. Broadly speaking, these phenomena can be
categorized into composition effects and holiday effects.
Composition effects in monthly data are primarily related to
the number of days in the month and composition of those
days in terms of the frequencies of Sundays, Mondays, etc.
In weekly data, composition effects are related to the position
of the week in the month. The effect of Easter is the holiday
effect of most concern in the paper because it is a holiday that
changes from year to year. The modeling strategy of Cleve-
land and Grupe is to construct a design matrix that can be
used to estimate via regression the deterministic calendar
effects.

In the first part of the paper, Cleveland and Grupe discuss
composition effects on monthly data. The design matrix used
to account for such phenomena is similar to that suggested by
Young (1965) and more recently by Cleveland and Devlin
(1980) and Hillmer (1981). In this setup, the monthly series is
regressed on seven variables that indicate the number of each
day of the week occurring in the month. Cleveland and Grupe
are more careful than most, however, in making a distinction
between flow and stock data and data that are constructed as
averages of daily stocks. Nevertheless, as pointed out by the
authors, even though the design matrices used to model calen-
dar composition effects are different, they are highly corre-
lated and one is likely to be as effective as another.

The modeling strategy for the Easter effect on sales
assumes that there is a uniform increase in daily sales for 10
days before Easter. The total Easter effect is then allocated to
either March or April in proportion to the number of days for
this 10-day period occurring in the respective- month. Unfor-
tunately, the authors are not very clear as to how this total
effect is estimated. It appears that it is the historical mean of
the difference between April and March when Easter (and the
10 days before) occurs entirely in one month or the other. If
so, then the procedure has the same difficulties that any
adjustment procedure has that uses fixed weights computed
from past data. Nonetheless, the technique is interesting and
warrants further scrutiny.

My criticisms of the paper are of a more general variety.
First, Cleveland and Grupe provide very little in the way of
motivation as to why the problem of calendar effects is of
interest and what are their ultimate objectives. Second, as
might be expected when the objective of a procedure is ill-
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defined, the evaluation procedures are inadequate to arrive at
an informed judgment as to the usefulness of the modeling
strategies proposed.

These problems are certainly not unique to Cleveland and
Grupe, but are common weaknesses in many papers that
address seasonality issues. It is noteworthy that a major focus
of the conference held here in 1976 concerned questions such
as ‘‘what is seasonality?’” and ‘‘why do we seasonally adjust
economic data?”’ Unfortunately, the lessons learned from
these discussions seem to be lost in the morass of techniques
present in many recent papers on seasonal adjustment. One
might consider such a comment as unfair. However, I believe
it is important to reemphasize the importance of these ques-
tions in our study and evaluation of seasonal adjustment
procedures.

In the context of the calendar effects discussed by
Cleveland and Grupe, the question of why calendar effects are
of concern must be answered before a modeling strategy can
be pursued and evaluated. For example, are we interested in
calendar effects because, by modeling them directly, forecasts
of future values can be improved, or because we are interested
in better modeling the relationships among economic time
series, or because we want a better estimate of some*‘trend-
cycle”” component of the series? The modeling strategy and
evaluation procedures clearly depend on which of these ques-
tions is being asked.

If improved forecasts is the objective, then Cleveland and
Grupe may be on the right track by choosing design matrices
that seem to mimic certain characteristics they apparently
observed in the data. This is most likely to be the case in the
context of forecasting a series based on its own history.
Unfortunately, the authors never provide us with an example
of the potential for forecast improvement. My guess is that for
the series investigated by Cleveland and Grupe the potential is
small simply because of the relative small amount of variance
accounted for by calendar effects. Notice that the peaks in the
spectra associated with the calendar effects are not even
detectable in the raw data.

The second rationale suggested above is that by considering
calendar effects, we might get a better understanding about
the relationships among economic time series. This is a much
more difficult question. It is not at all obvious that modeling
deterministic calendar effects will be productive in this con-
text. Particularly since these effects are likely to be common
to many economic time series. Unfortunately, to adequately
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address these issues requires much more structure to the prob-
lem and generally would be done on a case by case basis
incorporating some economic structure to the problem.
Finally, if the objective is adjustment to obtain an improved
estimate of some trend-cycle component, Cleveland and
Grupe should provide a more complete model of the unob-
served components model being assumed and the conse-
quences of their procedures. Although it is unclear from their
discussion, it appears that Cleveland and Grupe carry out their
procedures conditional on the removal of a trend and deter-
ministic seasonal. One might ask how the transformations
affect the decomposition strategy. It appears, for example,
that Cleveland and Grupe assume that the decomposition is
linear in the logs of the data. From an evaluation point of
view, if the procedures proposed by the authors are to

improve adjustment procedures, a comparison of their tech-

niques with other methods is warranted. Do their methods
improve (in some appropriately defined sense) on the methods
in the X—11 or other smoothing techniques? Once again, the
authors provide us with very little that would enable us to
answer such questions.

3

In closing, let me add that I found the procedures advocated
by Cleveland and Grupe potentially appealing at an intuitive
level. Nonetheless, as the above comments suggest, I feel it
would be preferable to define more precisely the ultimate
objectives of the adjustment procedures so that appropriate
evaluation techniques can be implemented.
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